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"~ ABSTRACT

The eikonal equation of ray acoustics is discussed for the general
case, with the index of refraction a function of the three space
coordinates;. Two examples illustratiné the‘influences of a two-
dimensional heat source and avéhermal mixing zome on the acoustic
ray paths are presented. Numérical results show that for long range
acoustical ray tracing inhomogeneities of the ocean in thé horizontal
plane can cause refraction effects, which are not negligible in com~
parison with effects in the vertical directionm. Rays; which'travel
in the vieinity of a heat source, can be refracted as much as 6°,
Thermal mixing zones can increase the range of shadow zones near the

ocean surface up to 50%. Even new shadow zones can be formed.
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FOREWORD
This work was éponsored by the Navai Weapons Ldaboratory Foundational
Regearch Program. It was performed in the Computation and Analysis
Laboratory as part of the MeQeorolbgical‘and chanografhical project
(R360FR103/2101/R01101001) .
The date of completion was 29 March, 1963,

Approved for Releage:

/s/ R. H. LYDDANE
Technical Director
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1. Introduction

Yool

In oceanography ray acoustics id usually‘applied to media in which

the speed of Bound changes’ only in.nue<directton. 1], [2]. This

.restriction is justified for ntost practical purposes because variations

of the speed of gound are much larger in the vertical direction of the

ocean than in the horizontal plane. Better knqwledge of the ocean

currents in recent years raises the question about :the influence

of a general three-dimensional gradient of .the speed of sound on long-

range acoustical ray tracing.

For this reason the Naval Weapons Laboratory has prepared a program

' for the solution of the eikonal equationin whicHAthe‘speed of sound

can be a'géheral function of the space coordinates. This program will

be uéed in*the mear future to solve special practical problems.

In thiy study the basic equations are discussed, andxfhexgbée&
progrém is applied on two. models xépresenting a heat source and a
thermal mixing zone in the ocean. Thege models are rather aétificiél
because the detailéd features of oceanic inhqmogeneities éré comﬁlex_
and trangient. They serve, however, to demonstrate the magnitude of.
refraction one may expect.in the oceans under such conditions. The
influence of small-scale fluctuations has mot been considered.

2. Basic Assumptions. and Fquations

All ocean currents are very slow compared with the speed of sound

so that their velocities. can be neglected. They are, however, often
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connected with large gradients of temperature and'.,aalin_:l.t:y, vhich

influence the spee‘d"of"sjound. The medium in considexation, tlietefore';
can be regarded as isotropic but inhomogeneous. Presuming, furthermore,

the validity of ray acoustics -~ that.the speed of sound does. not change

~much in distances of the order of one wave length —.one can use the

eikonal equation (see'e, g. Chernov [3]):

A | ,
._d_; (n .&.:..) Vn (1) .

vhere s = arc length along the ray path from a given starting point
¥ = P(s) the position vector of the ray
n = index of refraction of the med {um |

In a cartesian coordinate system (x, y, z) equation (1) is-equivalent

to the following three ordinary differential equations of second order:

g+ldMp 1de 1. 1
* n dx By'xy Bzxz n 9x ’(2)‘
gel@m.. 1., 13, _1n
y+naxyx+nay +nazyz n ¥y ‘ 3
Y- | lam.. 1320 .,_132n
e ATy T v T ™5 )

where the dots denote the derivatives with respect to s. The ray path

s determined by the initial conditions

8 = 8y Xo, Yo» Zo3 Ko ?'0: Zoe : (5)
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The set of equations (2) through (4) is programmed for solution by the

‘Runge-Kutta method on the compﬁtér IR - 7090,

By elimination of the implicit. parameter s eciuations (2) thr_ough‘i

(4) may be combined into two equations:

Y+ Q+ry® ez ><~l—él y=0 (6)

)=20 ' O

-l
n .3y
x "'(1"')"2"'2 )(l‘h }1{%

" The primes here indicate differentiation with respect to x, The

initial conditions G) becgme

x = X0: Jo» Zod Yo » %o - (8)

The index of refraction is a function of the temperature T, the

salinity S, and the pressure p of the medium:

n=n(T, S, p) ' )
with ' T=T(x, ¥, 7). : (10)
S'= 8(x, ¥, 2z) | | (11)
p = p(z) (12)

if the coordinate z is chosen normal to the ocean surface. For the
calculation of the index of xefraction (9) as a function of T, S, and

p the formula by Wilson [4] has been used. The functiods (10) and (11)
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depend on the medium undér consideration. p(z) is given by the hydro- -«

_static equation. From (9) through (12) there follows

n =n(x, y, z) (13)

Equations (6) and (j) are in general too complicated to yield an
analytic solution if the index of refraction is a function éf more thadn
one ﬁariable. Only in special cases are analytic solutioné possible.
Two such cases are briefly examined for n = n(x, y) in the next sectionm.

3. Discussion of the Fikonal Equation for the Two-dimensional Case

A medium will be assumed in which the index of refraction is only
a function of the coordinates x and y, 1. e.-%% = 0, In addition only
those rays will be considered which start out initially in the (x, ¥)
plane. Then, because of the restriction %§‘= 0 they will remain in

that plane. The differential equations (6) and (7) reduce to
1 2n 13 .
s ey HERy 23 oy (14)
with the initial conditions

X B Xgt Vo Yo e (15)

In general, the differential equation (14) cannot be solved in a

closed form, There exist, however,‘classes of analytic solutions
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which will be discussed briefly.

A first integral can be obtained if the last factor in equation (14)

represents an exact differentfal dY :

&
e

 ay - 428 4y - ay o ae)

=R

=4
&

According to -Kamke ‘{57, the first integral is

y’ = - tan(¥ + const,) ' an

Equation (16) holds if the function n satisfies the condition
n%n-= [Vn|? (18)
or: n= ¢ (x+ iy)ga(x - iy) : (19)

where only real values of n are of interest. ¢ and ¢, are arbitrary -
functions of‘ the complex number x + iy and its.conjugate x - 1y. In
many practical cases the approximation

loo oo .
nox Ox (20)_

inay be used. The condition (18), then, is replaced by the Laplace
equation VPn = 0 with the well%knom,gengral solution

n o=@ (x+ 1y) + glx - iy) .
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Another class .of analytic solutions .of equation (14) can be found by

choosing

%y“f‘;-;w (2

The ray paths are straight lines because y* = 0. Besides the trivial

case n = const, which is also a solution of'(IS), equation (21) will be

. satisfied if

g - v! = K =:
- = K e K o=y t o 2
H y : cons ‘ (22)
The solution of equation (22) ‘is:

n = n(x + Ky) (23)

Thus, in a medium described by the above index of refraction, one ray
(with the initial slope K) will be propagated as a straight iine.

4. Two-dimensional Heat Source in an Infinite Ocean

The ray paths near.a heat source will be calculated numerically by
considering only paths in the horizontal plame (x, y). In practice.a
heat source may be represented by a melting iceberg or by a separated
vortex flow with a temperature gradient, as it occurs in and near the
Gulf Stream. The heat transfer is approximately described by the
transient-state law

T ~Te .ot | (24)

| ——— = e
TQ'T°
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where r® = ¥® + y® . The heat Bource is located at tlie origin r = 0,

T is the temperétufe7in the plane (x, y), To the temperature atlthe
origin, an& Ta.the tempeféture at infinitya_ The coefficient o is
invefsely proportional to thé‘;ime. - For fay tracing_the_dependehcy
on the time can be,ngglected since the time-dependent heat tfansfer
is small with respgct,to the speed of sound, Using a linear approxi~
mation for the speed of sound as a functiop_of the temperature one
obtains |

n=1+ke@t® @

‘where k is a constant proportional to- the temperature difference
' between the heat source and the ocean at a large distance from the

‘heat source,

Equation (14) yields with equation (25):

o - }
y' £ L+ y"?.)—il?’-‘l%—sz‘ea(. Ty =0 (26)

" ‘Substituting

g=vax; N=vay (27)

one arrives at the normalized equation

L4 ‘N1, . m i3 'ﬂ- §Tl' = ' , ~v
T+ A+ Ny = 0 (28)

where thé primes denoté here the derivatives with respéct to & .
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Numerical solutions by means of the IBM-7090 computer are shown

in Figures 1 through 4 for the following parameters

ky = - 0,03155; (To = 10°C, Tg = o°'c>} :
heat source
kz = - 0.06310; (TO = ZOOC, Tm = OOC)
ks =+ 0,03155; (Ty = 10‘°C,‘T°° = 20°Cf}' A
o heat sink
kg = + 0,06310; (Ty = 0°C, T, = 20°C)

For the calculation of k a linear approximation of Wilson's
formula [4] has been applied.

The curves in Figures 1 through 4 can be used to construct the
ray paths from a point source of sound, Two examples are shown in
Figures 5 and 6, which are drawn with the aid of Figures 2 and 4,
respectively.

Discussion of the results.

The divergence of ray paths is a measure of the inténsity of
sound waves. It can be seen that a heat source causes the bundles
to diverge and thus diminishes the intensity whereas a heat sink
has the opposite effect. Besides this qualitative statement the
total deviation of the ray paths can be found., Figure 7 showg Ehe
total angle of deviation A8 as a function of T(~®) -~ the perpen-
dicular distance between the asymptote of the ray and the heat

source — for To - T, = 20°C. The solid curve is obtained from
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the numerical solutions, and the dashed curve is the graph .of the

88 = 2k & (-ye” N F | . (29)

function

Equation (29) is derived in Appendix A as a first order approxima-

tion without knowing the actual ray paths. The agreement of the
two curves is satisfactory.

From Figure 7 it is seen that rays'passing‘near'a heat source
can be rgfracted up to 6°, This may be regarded as a measure for
the magnitude of error that can occur if a change‘of the refraction
index in the horizontal direction of an ocean with a‘hea; source

is not considered,

5. Thermal_Mixing Zone in an Ocean

In this example ray tracing in the vertical cross-section of

the boundary layer between two fluid flows normal to the flow

directions is examined. The flows have different temperatures so

that a thermal mixing zone associated with the momenﬁﬂm“boundary '
layer exists. N

Let the cross-section be the (v, z) plane which is normal to
the flow direction x., The horizontal temperature distribution at

the ocean surface z = 0 in the y-direction is assumed to be propor-

tional to the flow velocity and according to Schlichting [6] :

,0) - T(-,0 ~ — -§‘_ 2
ig,& - :E‘E-eo,og = erf(y - 3y = %,TJZ " dr (30)
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where T(~®, 0) and T(», 0) are the surface temperatures of the

*

colder fluid and the warmer flui&, respectivelyP and‘& is the
point of inflection of T(y, 0). For the vertical temperature distri-
bution of. the colder fluid an empirical functiom h(z)Ais used, wﬁich

is typical for the ocean (see Fig. 8)[21:

_ I(~-®=, z) - T(-=, 0) '
hee) = R REn D, o

where T(-®, zg) is the temperature of the colder fluid at. the bottom.
The function h(z) is obtained by linear: interpolation of the

temperature vs. depth graph in Figure 8, The points between which

" this interpolation is made are tabulated in Appendix B. The

temperature is conétant for 0 = z‘g 60. The main~thermoc1ine &
extends from z = 60 to about 1500 m., For depths greater than 3000 m,
the teiperature is constént.again. Figure 8 also shows the speed
of sound V vs, depth for the colder fluid (y = -0, It ﬁillvbe ob-
served that V has a relativ; maximum at z = 60 m, The minimum
occurs at z = 600 m, which is the depth of the deep sound channel.
In order to obtain the temperature distribution over the.éntife
(y, z) plane it is assumed that for amny line .z = const the tempera-
ture distribution is similar to that for z = 0 de that the dif-
fe;ence T(-, z) - T(+®, 2z) varies in the same way as h(z). The

complete témperatufe‘distribution in thé,(y5 z) plane can then be

10 w
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exﬁréssed by

T(y, 2) = T(-®, 0) + [T(-=, 0) = T(-=, z) J(z)
+[1(2, V) ~T(-=, 0) (1 + h(z)Jerf(y = F) . (32)

Assumption (32) .implies that the velocity of the flow as a function
of the depth is proportional to the vertical temperature distribu-
tion., This hypothesis, although not borne out condlusiveli, is at
least not contradicted by available'experiﬁental results. See
Stommel 71 .

The surface of the ocean is taken as a spegcular reflector, and

. the bottom is assuméd to be a perfect absorber.,

For numetrical calculations the following data are chosen which
represent typical values for the Gulf Stream:
T(-=, 0) = 12°C, T(+», 0) = 27°C
. T(~, zg) = 2°C
zg. = 5000 m

S

35 °/oo

p = (1.033 + 0,1023z)kg cm™?

The computed ray paths are shown in figures 9 through 17.
Each ray is identified by the angle it makes initially with the
.ocean surface, The sound source is located at three different

depths:y z = 0,'600‘apd 3000 m for each of two positions inside

11
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the thermal_mixing zone: at y =0, and y = SQ km, The latter
position corresponds to the inflection point ¥ of the error func-
éién (30). The scale of y is then determinedvﬁy letting the
distance between y = 0 and y = 30 km correspond to three standard
deviations of the error function (30). Computations were carried

out up to a range of 100 km,

D;squssion of the Results

Figures 9 through 11 show ray paths in an ocean in which the
speed of sound varies only with depth as in Figure 8.

With the sound source at the surface (Figure 9) all rays with
an angle of inclination 05 < 2°5‘ are confined in a shallow layer
60 m below the surface, Rays with 2°5' < 8, < 13°55' are bent
downwards' till they reach the depth of the sound channel (600 m),
and then are bent upwards again. This results in a large shadow
zone extending up to a range of 47 km ~ region A, Rays with
8p > 13°55° are absorbed by tﬁe bottom, so that two other shadow
zones — regions B and C — are formed, If the bottom were removed -
(zg = ®) these shadow zones would not exist, but one can easily see
that the intensity would be relatively low.

In Figure 10 the sound source is placed at the deep sound \
channel depth (z = 600 m). The rays oscillate about this channel,
which is a well known result [2], [8] , Three shadow zoﬁes‘are

formed: regions A, B, and C. In contrast to Figure 9 the regions

12
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A and B extend up to thé surface.
In Figure 11 the sound source is located 3000 m below the surface,
at the depth where the wertical change of the temperature becomes

zero., All rays with 85 = 12° are bent up to and reflected by the

. surface, those with 6y > 12° are absorbed by the boftom, causing the

formation of two shadow zones: regions A and B.

Figures 12 through 14 show the ray paths in an ocean with the
two-~dimensional temperature distribution (32), and are directly com-
parable with the preceding Figures 9 through 11. In general it can
be noted that the effect of the thermal mixing zone is to depress
the rays downwards, and thus to enhance all surface shadow zones,
and even create sbme new ones,

A comparison of Figures 9 and 12 shows that the shédow zone A
now extends up to a range of 60 km instead of 47 km — an‘increése
of 29%.: |

The influence of the thermal mixing zone has created another
interesting effect, which is not shown in Figure 12. Because the
rays'are‘gradually shifted downwards, all of the rays with
6, < 2°5' are not confined any more within the shallow 60 m surface
layer as in Figure 9, Every time the limiting ray in this surface.
layer reaches its nadir, a small packet of rays will have been
shifted downwards far enough so that it penetrates the 60 m depth

and is subjected to the negative speed of sound gradient of the

13
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main thermocline., To show this effect the ray paths for five such
rays have been calculated and are plotted in Figure 18. One sees
that the regions A, B, and C in Figure 12 aée‘not real shadow zones,
but are interlaced with these parrow bundles of rays. It must be
observed that this effect would ﬁot appear 1if the speed of sound vs.
depth profile had a continuous first derivative at z = 60 m,

In Figure 13 the deep sound channel Qith the oscillating rays
slopes downwards with increasing range. The shadow zones A and B
are substantially enlarged as compared with the corresponding
shadow zones in Figure 10, The range of A has increased by 43%.

Figure 14 shows that the thermal mixing zone has fofmed two
new shadow zones ﬁear the surface — regions C and D ~ which'aré
not present in Figure 11.

Figures 15 through 17 show the corresponding ray paths with
the sound source placed at the point of inflection of the thermal
mixing zone (y = 30 km)., Here it will be noticed that the depres-~
sion of the rays is even more pronounced than in Figures 12-14,
because now the source is at the position where the effect of the
mixing zone is the greatest. Comparison of Figures 16 and 10
shows an increase of 517 in the range of A.

In connection with the shadow zones A, B, and C in

Figure 15, the same comments as for Figure 12 apply.

14
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Approximate Equation for Total Angle of Deviatibn for a
Ray Near a Heat Sourcé

In general the curvature of a line is given by:

g | TETE e

From the eikonal equation (1) there follows:

— .
da) = 1y, . dn dr ' -2y
I 5‘( n - s ds ) (A-2)

From (A-2) the curvature of a sound ray becomes:

=L [ e \?
= n '\/ ‘VH»la - (Vn . %_IS;.) E2

I AV —— .
or: M ‘“Jll:/ I - cos ¥ o T (a-3)

where { is the angle between Vn and gr .

Equation (25) yields:
2
Va = - 2kpe™ P (Vo) . (a-4)

where p is the normalized radius p° =h§2‘+‘ﬂ2 .
In this problem the direction of Vn is given by the unit vector
Vo with diréction cosines % andﬁg . The ray has the direction

cosines %E and 53 The angle § is given by:
s s

cos ¥ = ('-5 ;H) ' A | (A-5)
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The curvatixre (A-3) becomes - '

y _ 49 2ke™P [ s ( a8 !}_B)a
ATl mper VRS SRy A

‘(A-5)
The total angle of deviation AB between the injitial and finél direc-
tions of the ray is given by the line integral
se= [ Ms (A7)
S=Sc A ' ’
The equation of the ray is not known analytically, therefore

this integral is evaluated with the following approximations,

2
Since k < <1, ke™ P can be neglected in the denominator of (A-6).

Also, _(_1_'[} <<4b . Therefore the approximations A 0, N# N(-x),
ds ds ' ‘ ds ,
p? = B2 & [N(-=) P, g—g =1 and ds == dE can be used. With these

approximations equation (A-7) becomes

which reduces to equation (29) in the text:

AS = M‘[ k 'n(.-co)e" [:T](-eo) 32
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Typical Temperature vs, Depth Data for the Ocean

In the table below are listed the depths together with the

corresponding temperatures in Figure 8, between which the linear

interpolétions of h(z) in equation (31) are wcalculated.

Depth z
in metexrs

500

600

800

1000

1500

2000

2500

3000

5000

Temp T
in °C

12,00
}2.00
7.83
6.72
5.89
5.33
4.50
4,06
3.50
3.11
2,67
2.28
2,11
2,00

2.00
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Depth z inm

Temperature T in °C
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Figure 8: Temperature T and Speed of sound V vs, depth z at y = =~m,
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